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A new iterative method for solving the time-dependent multifrequency radiative transfer 
equations is described. The method is applicable to semi-implicit time discretizations that 
generate a linear steady-state multifrequency transport problem with pseudo-scattering within 
each time step. The standard “lambda” iteration method is shown to often converge slowly for 
such problems, and the new grey transport acceleration (GTA) method, based on accelerating 
the lambda method by employing a grey, or frequency-independent transport equation, is 
developed. The GTA method is shown, theoretically by an iterative Fourier analysis, and 
experimentally by numerical calculations, to converge significantly faster than the lambda 
method. In addition, the GTA method is conceptually simple to implement for general 
differencing schemes, on either Eulerian or Lagrangian meshes. 0 1988 Academic Pm, Iw. 

I. INTRODUCTION 

The equations of thermal radiative transfer describe the transport, absorptive, 
and emission of photons within a physical material. As photons propagate, they are 
absorbed and emitted by a Planckian distribution; in this process, the material tem- 
perature can change, thereby changing the shape of the Pianckian. This tra 
process is inherently nonlinear, and because of this and other properties 
equations of radiative transfer, standard numerical methods frequently tend t 
work rather poorly. In particular, when the coupling between the material an 
radiation is strong, as occurs when the material opacity or the time step is large, 
standard iterative methods for solving the radiative transfer equations generally 
converge very slowly. 

In this article we describe, analyze, and present numerical test results from a new 
iterative grey transport acceleration (GTA) method for solving time-dependent 
thermal radiative transfer problems. The GTA method is conceptually simple and 
easy to implement, for problems with general differencing schemes on ~~l~~a~ or 
Lagrangian meshes. The method is specifically designed for problems whit 
time-differenced in a semi-implicit manner, yielding a transport equation with 
“pseudo-scattering” [ 1, 21 term. In large-scale problems this equation m 
solved iteratively, and as mentioned above, standard iterative methods co 
very slowly when the time step or the opacity is large. To accelera 
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convergence by the GTA method, one group-collapses the frequency-dependent 
transport equation into a grey transport equation and introduces this new equation 
into the lambda iteration algorithm. The derivation of the GTA method is the 
subject of this article. 

Other iterative acceleration methods have been proposed for time-dependent 
radiative transfer problems. In particular, Auer [3] has recently reviewed a number 
of methods that have been developed in the astrophysical community. However, 
this work is oriented to one-dimensional geometries, and our concern here is with 
methods that are potentially applicable in multidimensional geometries for general 
types of meshes. 

The diffusion-synthetic acceleration (DSA) algorithm [2], originally developed 
for neutronics problems [4, 51, is applicable in multidimensional geometries. This 
is a nested iterative algorithm in which the convergence of the multifrequency 
transport equation with pseudo-scattering is accelerated by the solution of a multi- 
frequency diffusion equation, and the convergence of the multifrequency diffusion 
equation is accelerated by the solution of a grey diffusion equation. When it is 
applicable, the DSA method is more efficient than the new GTA method. However, 
the DSA method is complicated to implement, and stability difficulties, caused by 
accelerating the convergence of a transport equation with a diffusion equation, 
have, to this date, restricted the 2-D applications of the method to rectangular 
(Eulerian) spatial grids [2, 41, with the diamond difference spatial discretization 
method [2, 4, 6, 71. The GTA method, on the other hand, is much simpler to 
implement and is applicable to general differencing schemes on general types of 
meshes. Thus, although the DSA method is more efficient when it can be used, the 
GTA method is more easily implemented and wider in its range of applicability. 

We reiterate that the DSA method contains, at the “inner” iteration level, an 
algorithm in which the convergence of a multifrequency diffusion equation is 
accelerated by solving a grey diffusion equation. This “multifrequency-grey” (MFG) 
iteration [2, 8, 91 is conceptually very similar to the GTA method considered here, 
except that with GTA, the underlying equations are transport, rather than diffusion. 
Also, the GTA method considered in this paper is linear, in the sense that the terms 
that make our grey transport equation consistent with the multifrequency equation 
are additive. The MFG method can be formulated eiher linearly or nonlinearly [2]; 
in the latter case, the consistency terms are multiplicative. The nonlinear 
formulation, which can also be applied to the transport equation, is described in 
more detail in Section VIII. 

A summary of the remainder of this paper follows. In Section II we introduce 
notation, formulate two semi-implicit time differencing schemes, and for each 
scheme derive linear, steady-state, multifrequency transport equations with pseudo- 
scattering within each time step. In Secton III we describe the lambda iteration 
method for these equations and prove theoretically, by an iterative Fourier analysis, 
that this method converges slowly when either the time step or the material opacity 
is large. In Sections IV and V we develop the GTA method, and in Secton VI, we 
show via another Fourier analysis, that its convergence properties are a significant 
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improvement over those of lambda iteration. In Section VII we describe some 
numerical results from an implementation of the GTA method in a test code, and 
we conclude with a brief discussion in Section VIII. 

II. THE RADIATIVE TRANSFER EQUATIONS 

In the absence of material motion, scattering, interior sources, and 
conduction, the equations of thermal radiative transfer [2, 10, 117 consist of the 
equation of transfer 

and the energy balance equation 

C3T 
coat= !I o(l- B) di2’ dv’, 

together with the initial conditions 

1(x, a, v, 0) = li(X, n, v) 

T(x, 0) = Tj(x) 

and the boundary condition 

(2.1) 

The independent variables in these equations are x (position), Q ~dire~tio~~, 
v (frequency), and t (time). The unknowns are the specific photon intensity 
1(x, Q, v, t) and the material temperature T(x, t). The known expressions are the 
opacity rr(v, T), the heat capacity c,(T), and the Planck function 

2hv3 
B(v, T)=7 (ehY’kr- I)-‘, (2.5) 

where c is the speed of light, h is Plan&s constant, and k is Boltzmann’s constant. 
Later we shall use the following explicit forms for c, and Q, 

c,(T) = c, = constant, (2.6) 

CT(V, T) =- (h;)3 (1 - e-h”‘kT), 

with y = constant. 
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Let us time-discretize Eqs. (2.1) and (2.2) in the following semi-implicit way: 

I n+l - In 
c At, 

+!2*vz,+, =~H(bn+,-~n+l)? (2.8) 

T n+l - Tn C v,n At,, = 1.i cn(ln+ 1 - b,, 1) ds2’ dv’. 

Here the subscripts refer to the time at which the indicated quantity is evaluated. 
Thus, 0 and c, are evaluated at the old time step, and an approximation b of the 
Planck function is evaluated at the new time step. It is not feasable to implicitly set 
b n+l =&+I = B(v, T,,+ r), because Eqs. (2.8) and (2.9) become nonlinear. Likewise, 
it is not efficient to explicitly set b, + 1 = B,, because then extremely small time steps 
are required to obtain accurate solutions. Therefore, one compromises and takes 
b ,,+ r to be a suitable approximation to B,, r. We now describe two such 
approximations. 

The “nonlinear” semi-implicit method, which is based on the implicit Monte 
Carlo method Cl], uses the identity 

@,, = 4~ s B, dv’ = acTi, (2.10) 

where a is the radiation constant [lo], and takes 

where 4, + I is an approximation to Cp,, r, derived as follows. Noting that 

so 

aT aTa@ c,Tao i a@ ~“~~(-cu--=---~--, 
at a@ at 4~ at p at 

we can rewrite Eq. (2.2) as 

i a@ --= 
P at SJ’ 

g(I- B) dQ’ dv’, 

and time-difference it in the form 

-$+,,+I) dQ’dv’. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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Solving this equation for c$~ + I and introducing the result into Eq. (Ill), we obtain 

b n+l 
=B ~,+P,At,SSo,I,+,d~‘dv’ 

’ @,+&,At&,B,dS2’dv’ ~ 
(2.16) 

The “nonlinear” semi-implicit method now consists of Eqs. (2.8), (2.9), and (2.116). 
For this method, the above approximation b,, 1 of B, + I is positive, but it has an 
O(AT) error. We refer to this as the “nonlinear” method because the correction to 
B, in Eq. (2.16) is multiplicative. However, the resulting equations yield ~~~ea~ 
relationships among I, + 1 and T,, + 1. 

The “linear” semi-implicit method takes, simply, 

and then Eqs. (2.8), (2.9), and (2.17) determine In+ I and T,+ r. A bad feature of 
this approximation is that it is not positive for all v if T, + 1 < T,. However, a goo 
feature is that the error in Eq. (2.17) is O(AT’). We call this method “linear” 
because the correction to B, in Eq. (2.17) is additive. 

The “nonlinear” and “linear” methods can be rewritten as follows. Let us define 

1 
z,=-------, 

c At, 

4B(v, T,(x)) 

ux, v) = T,(x) 
(nonlinear), 

g (~9 T,(x)) (linear ), 

fIrI = 
49-c At, J o,l-,, dv’ 

c,,, + 4n At, j aJ,, dv” 

Xn(% v) = 
a*rn 

1 CT,~,, dv” 

and 

Q,dx, fi, v) = z,Z,, + o,,B,- g,x, j a,,& dv’. 

Then, I,+ 1 and T,, + 1 are determined by the equations 

dJ2’ dv’ $ Q, 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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and 

T *+I =r,+$(l-q,) jja,(l,+,-B,)$R’dv’. (2.24) 

Thus, the nonlinear radiative transfer problem has been reduced to solving 
Eq. (2.23) within each time step. This equation has the form of a steady-state linear 
neutron transport equation, with fission but no scattering [6, 71. Nevertheless, 
the integral term on the right side of this equation has been called the “pseudo- 
scattering” term [l]. We note that for both the nonlinear and linear methods, 

rn > 0, (2.25) 

0 < tl, < 1, (2.26) 

and 

I xn dv’ = 1. (2.27) 

III. THE LAMBDA ITERATION METHOD 

The standard lambda iteration method for Eq. (2.23) is defined by 

Q . Vl’k + l/2) + ((r + z) I’k + 112) = rlXt;‘k’ + Q, 

F’k + l/2) = L 

4n SI 
aI’k + l/2) do’ d,,‘, 

F’k + 1) = F’k + b’21, 

(3.1) 

(3.2) 

(3.3) 

where each ICk+ ‘12) satisfies the boundary condition (2.4). We note that the time- 
step subscripts have been deleted, in recognition that I and Fare unknown and that 
0, r, q, 1, and Q are known, and that iteration superscripts have been added to the 
unknowns I and F. 

To analyze the convergence properties of the lambda method, let us define 

(3.4) 

T(k + WI = I- I’k + 112) 
2 (3.5) 

where F and I satisfy Eqs. (3.1) and (3.2) with the iteration superscripts deleted (i.e., 
Z satisfies the desired transport equation). Then, the rate at which FCk) and ?(k+1’2J 
tend to zero is identical to the rate at which Fck) and ZCk+ ‘12) converge to F and I. 
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To determine this rate, we subtract Eqs. (3.1) through (3.3) from the equations for 
I to obtain the following equations for F(k) and rCki- ‘j2): 

Q. Vl(k+ i/2) + [a + z)?fk+ i/2) = qXp(k), (3.6) 

(3.7) 

Now we take Q’, 4, and x to be independent of x and consider a Fourier decom- 
position of FCk) and ZCk+ ‘12). A single Fourier mode will then have tbe form 

F(k) = okei2.<. x 
3 (3.8) 

T(k + l/2) = wka(a, v)e% x, 69) 

where 151 = 1 and 0 < ,J < 00. The Fourier mode with the largest value of joJ will be 
the slowest to decay to zero if lo] < 1, or it will be the most rapidly divergent if 
jcol > 1. In either case, this mode determines the convergence properties of t 
iteration method, and we now seek to explicitly evaluate it. 

Introducing Eqs. (3.8) and (3.9) into (3.6) and (3.7) we obtain 

oa dsZ’ dv’, 

and thus 

a(Q, v) = f?x(v) 
i/l{ * n + CT(V) c t’ 

1 CQ 1 
Qj=- 

s s 20 
w(v’)x(v’) dp d , 

V 
-1 i&l + o(v’) + z 

00 ?L 
=r 

s 
a(v’)x(v’) k tan-’ 

[ o(v’)+z 
dv’. (3.13) 

0 

For each v’, the bracketed term in Eq. (3.13) is a monotonic decreasing function of 
A, taking its maximum value at 2 = 0. Thus, 

==O/j,=O 
m dv’)x(v’) 

=do fJ(v’)+z dv’. (3.14) 
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The quantity pL is termed the spectral radius of the lambda iteration scheme. By 
the above analysis, it determines the convergence rate for P+i/‘) in the sense 

(II-P+ l’2)(/ “N Apk,, (3.15) 

where A is a constant, I/ // is a suitable norm, and k $1. Because of Eqs. (2.18), 
(2.26), and (2.27), we have 0 < pL < 1, so the lambda method converges. However, 
we also have pL -+ 1 as q -+ 1 and z/a -+ 0. By Eqs. (2.20) and (2.18), 

(3.16) 

and 

LO for cadt% 1. 
(r 

(3.17) 

Therefore, if the product 0 At is “large,” then pL % 1, and although the lambda 
method converges, it does so very slowly. 

Unfortunately, the conditions described by Eqs. (3.16) and (3.17) are often 
satisfied in practical situations. Here the only direct way to reduce pL is to reduce 
At, but to have a sufficient impact on pL, one must usually take At so small that the 
gains achieved by reducing the number of iterations per time step are overwhelmed 
by the large increase in the number of time steps. Thus, there is a need for a 
modified iteration algorithm with superior convergence properties. This is the 
purpose of the GTA method, and the subject of the remainder of this article. 

Before proceeding, we reiterate that the slow convergence of the lambda method 
is due to the il z 0 Fourier modes, for which Eq. (3.12) gives 

x(v) a(Q, v)=q-- iA& * 
%(v) 

g.(v) + z [a(v) + ty + o(n2)* 
(3.18) 

Thus, the two “shape” functions that are associated with the most slowly 
converging Fourier modes are 

x(v) PO(V) = - 
c(v) + 7’ 

Yl(i2, v)=ci x(v) =ci!P,(v). 
[o(v) + Z-J’ - 

IV. THE GTA METHOD 

(3.20) 

In the GTA method we begin each iteration with a lambda “sweep” described by 
Eqs. (3.1) and (3.2). However, we replace Eq. (3.3) by a more complicated, but 
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more advantageous set of equations, derived as follows. First we define the 
frequency-integrated intensity and source 

ick+ 1/2)(x, Q)= j I(k+1'2)(~, S-k, v') dv', 

c&x, a) = [ Q(x, Q ~'1 dv', 

and we integrate Eq. (3.1) over v and rearrange, obtaining 
n 

In deriving this equation, we used the normalization (2.27) for x, and we a 
identical terms containing the (for now) undefined grey opacities ci, and 8s to 
sides of Eq. (4.3). (These quantities are derived later and are not obtained by 
directly integrating cT or os over v, as in Eqs. (4.1) and (4.2).) To define an 
equation for fCk+ I), we replace FCk) by FCk+ l/2) on the right side of Eq. (4.3); using 
Eq. (3.2), we obtain 

n 
a.vj%+l)+&Tf W+l)-as ffk+l)dG’ 

4n s 

= (6,-a-r)(‘ki”2’dv.+~SJT (tp+38,)I(k+“2’di2’dv’ -+ a (4.4) 

where fCk+‘) satisfies the same incident boundary conditions as fCk+ ‘12). e note 
that Eqs. (4.3) and (4.4) become identical upon convergence. Next, to obtain 
FCk+‘), we rewrite Eq. (3.2) as 

1 
F’k + l/2) = z 

4n s 
f’k + l/2) dQ’ + i (0 - c?)I’~+ 1’2) di-2’ dv’, (4.5) 

where the grey opacity 6 is (for now) undetermined, and then we define A jdk+l)=z 
4n: s (0 - B)lck + ‘12’ ds2’ dv’ (4.6) 

We note that Eqs. (4.5) and (4.6) become identical upon convergence. 
The GTA method is given by Eqs. (3.1), (4.4), and (4.6). Equivalently, i 

define 

ti (k+ l’(x, fi) = I^(k+ 1)(x, a) - f(k+ W(x, (4.7) 
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then, by subtracting Eq. (4.4) from (4.3) and (4.6) from (4.5) and using Eq. (3.2), 
we obtain 

Q . vI’k+ 112) + (c + ,)I@+ 112) = vlXF’k’ + Q, (4.8) 

F’k + l/2) = L 
4lt 

al(k + l/2) da’ d,,‘, 

In this form, the grey equation (4.10) has a much simpler source term than in 
Eq. (4.4). Also, we have taken the incident flux for I on the exterior boundary to be 
prescribed (see Eq. (2.4)), and thus, since I^(k+1’2) and fCk+l) have the same 
prescribed incident boundary values, 

lpk+l)(x, 0) = 0, XEaD, a.Il<o. (4.12) 

(If part of the boundary conditions for I are reflecting, then this same part will also 
be reflecting for $ (k+ “.) Equation (4.12) is now a simpler boundary condition than 
the one which holds for ick + ‘), and $(k+ ‘) is fully specified by Eqs. (4.10) 
and (4.12). 

To summarize, the GTA method is described by Eqs. (4.8)-(4.12). The first two 
of these equations are identical to the first two steps in the lambda method 
(Eqs. (3.1) and (3.2)), but the remaining three GTA equations are fundamentally 
different from the last equation in the lambda method (Eq. (3.3)). 

In particular, these remaining GTA equations contain the grey transport 
equation (4.10). Therefore, in one “outer” iteration, consisting of a single pass 
through Eqs. (4.8)-(4.12), one is required to solve Eq. (4.10), and to do this one 
must typically perform “inner” iterations. (Unless stated otherwise, we assume in 
this paper that the grey equation (4.10) is solved by lambda iteration. Other 
possible iteration strategies are discussed in Secton VIII.) Thus, the GTA method 
is, like DSA, a nested algorithm that has two spectral radii associated with it, one 
(pour) corresponding to the reduction of the iteration error in F during an outer 
iteration, and the other (pm) corresponding to the reduction of the iteration error 
in $ during an inner iteration. The Fourier analysis for the outer and inner 
iterations can be performed just as described in Secton III. For outer iterations, we 
obtain a complicated expression that must be evaluated numerically (see 
Section VI), but for inner iteratons we easily obtain 

1 
PIN= 2 . I I (4.13) 
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To fully specify the GTA method, it remains to determine the grey opacities CT,, 
a us, and d; we do this in the next section. 

V. TWE GREY OPACITIES 

In Secton III we showed that the most slowly converging components of I in the 
lambda iteration method are Y0 and Yy, (Eqs. (3.19) and (3.20)), and in Section IV 
we derived a generalization of the lambda method (Eqs. (4.8)-(4.12)) cant . 
three free parameters-the grey opacities br, 8,, and 8. In this section we 
these grey opacities by requiring the GTA algorith onverge in one iteration if 
I(k+‘,‘2J is a linear combination of Ug(v) and k(x). v), for an arbitrary vector 
function k(x). 

To do this, it is convenient to consider he GTA method as defined 11, 
(3.2), (4.4), and (4.6). Let us require the bracketed terms on Qf 

Eqs. (4.4) and (4.6) to vanish if I (k+ ‘j2) has either the shape of ese 
conditions can be shown to guarantee o(O) = 0, and they yield the three equations 

Q=I( c?,-o-z+fp-6,)Y~dv’, (5la) 

O=i( 6,-a-z)Yl dv’, (§.fib) 

O=j (a-c7)Yodv’, (5.k) 

which have the solutions 

c?s=ci,-(l-q)6-7. 

Equations (5.2) have the following properties: 

(52c) 

(i) 0~ Cr. and 8, < c?r. Thus, if 0 < 6,, then the grey equation (4.10) can be 
solved by lambda iteration. However, if 8, < 0, then one can show that Eqs. (5.la) 
and (5.lc), which imply (5.2~) and (5.2a), give w(O) = 0. Thus, we can aban 
Eq. (5.2b), set 8s = 0, and use Eq. (5.2~) to give 6, = (I - tl)S -t- Z. Then we still 
have o(O) = 0, and because 8, = 0, the lambda iteration scheme converges with just 
one inner iteration per outer. These “default” values of BT and bi, are used only 
when cr At is sufficiently small, i.e., for situations when lambda iteration itself is 
reasonably quickly converging. 
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(ii) Letting pL d enote the spectral radius of the lambda iteration method 
applied to the multifrequency equation (2.23) (see Eq. (3.14)), and pIN denote the 
spectral radius of the lambda iteration method applied to the grey equation (4.10) 
(see Eq. (4.13)), we have 

L= j- (0 :q dv’g n= 1,2. 

After some algebra, we obtain 

PL=PIN+ 

where, by Cauchy’s inequality and Eq. (2.27), 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Therefore, 

OdPINGPL, (5.7) 

with the right equality holding iff At = cg or a(v) = constant, and the left equality 
holding whenever the formulas (5.2) lead to B, 40. Hence, for At < cg and 
g(v) # constant, the grey equation (4.10) can be solved by lambda iteration more 
efficiently than the original multifrequency equation (2.23). 

(iii) If a(v)=constant, then pIN =pL, but 

8 = CT, (5.8a) 

8T=o+9, (5.8b) 

6, = rp, (5.8~) 

and from Eqs. (4.4) and (4.6), the GTA method will converge in one iteration. 

VI. FOURIER ANALYSIS 

Here we describe the results of Fourier analyses that predict values of poul and 
pIN for idealized infinite-medium problems in which y, co, and T are independent 
of x. These analyses use the forms (2.6) and (2.7) for c, and (T, and are based on the 
nonlinear semi-implicit time differencing method described in Section II. (The 
convergence rates for the linear semi-implicit time differencing are slightly faster.) 
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To numerically solve the radiative transfer equations, it is necessary to discretize 
x, Q, and v. Typically, x is discretized by a finite difference or finite element 
method, 52 by a finite element or discrete-ordinates approximation, and v by the 
multigroup method [2-S]. We observe in computations that the x and v discretiza- 
tions do not appreciably affect the inner or outer iteration convergence rates, an 
that the choice of the Q-discretization does affect the outer convergence rate but 
not the inner. Therefore, we have considered the slab-geometry discrete-ordinate 
versions of Eqs. (4.8)-(4.12) and have evaluated poUT for the worst case of At = 33, 
and for the standard Gauss-Legendre angular quadrature [6, 7] sets of various 
orders NQ. The Fourier analysis for this algorithm is implemented just as described 
in Section III, with c,,, y, and T taken to be constants. The resulting expression for 
ooUT(A), after a considerable amount of algebraic manipulation using Eqs. (2.5), 
(2.7), (2.19), and (2.21), is 

where 

u JJ 
0” C’(t3/(l -e-‘)) dt]” 

n Jz e-‘(t3/(1 - e-f))2 dt ’ 
n= 1,2, 

Here p, are the discrete ordinate values, and w, are the angular weights 12, 6, 71, 
satisfying 

By expanding the above expressions for (Ai @ 1, one can easily show w,,,(O) = 0. 
Also, these equations are independent of cV, and variations in y and T have the sole 
effect of resealing 1, in Eq. (6.3). Therefore, poUT is independent of c,, y, an 
(This is true only for the special case of At = 00 considered above.) 

In addition to evaluating pOUT, we have also computed NoUT, the ~urn~er of 
outer iterations necessary to reduce the iteraton error by one order of rnag~it~d~~ 

(po”T)No”T= 0.1. 

The results of our calculations are summarized in Table I. 
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TABLE I 

pour and NoUT for Various Values of NQ 

NQ POUT Nom 

2 0.867 16.1 
4 0.844 13.6 
8 0.810 10.9 

16 0.770 8.8 
co 0.706 6.6 

We see that poUT is a decreasing function of NQ, taking its smallest value for the 
hypothetical case of an infinite-order quadrature set, corresponding to no angular 
discretization. We emphasize that for this worst case of At = co, we have pL = 1.0 
and N, = co, and thus the lambda method for the multigroup equations can, in 
practical problems, converge arbitrarily slowly. However, this is not true for the 
GTA method, as is shown in Table I. 

Regarding inner iterations, we have by Eqs. (3.14) and (5.3), for the worst case 
At=co, 

PIN=&= 1.0. (6.8) 

However, for At < co, we have by Eqs. (3.14) and (5.7) 

PIN < PL < l.O. (6.9) 

To illustrate the relative values of pIN and pL for At < co, we have evaluated PIN) 
N iN, pL, and N, for various values of q and z, with the model opacity given by 
Eq. (2.7), and the numerical values of the constants c, and y in Eqs. (2.6) and (2.7) 
set equal to one; the results are given in Table II. Here we see that in the worst 
cases, where Ni, and NL are large, NL is larger than NIN by about a factor of 18. 
Therefore, the grey equation (4.10) will require less work to be solved by lambda 
iteration than the multifrequency equation (2.23) for two reasons: Eq. (4.10) has a 
smaller spectral radius, and only one frequency group. We emphasize that the worst 
case result NL/NIN z 18 applies to the model opacities given by Eq. (2.7), and that 
this ratio can change for other opacities. 

To implement the Fourier analysis, we have made the idealized assumptions that 
the medium is infinite and that y, c,, and T are constants. In the next section we 
present experimental results from numerical solutions of the radiative transfer 
equations using the GTA algorithm. These results show that convergence rates 
predicted by the Fourier analysis represent approximate upper bounds for problems 
in finite media, with variable y, c,, and T, and a nonuniform spatial mesh. 
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TABLE II 

The Quantities pL (NL) and pIN (NIN) for Various Values of q and z 

VII. NUMERICAL RESULTS 

In this section we discuss convergence of a numerical solution of the a~irn~t~~lI~ 
symmetric, slab geometry problem 

dT 
c,---2271 at SJ’ o(l- B) dp’ dv’, (7.2) 

with the initial conditions 

k v, PL, 0) = B(v, Tj), Q<X<X, (7.3af 

T(x, 0) = T,, (7.3b) 

the boundary conditions 

40, PL, v, t) = B(v, Td, 0 < t, O<p<l, 

WC P> v, t) = 0, o<t, -l<p(<O, (7.51 

and the opacity defined by 

G(X, v, T) = y(x) 1 -&y. 

5R1/78iZ-15 
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Here x is measured in centimeters, t in seconds, v in seconds - ‘, and T in degrees 
Kelvin, and we take 

X=4 cm, 

~=5.109x10i4cm~3, 

kTi = 1 .O eV, 

kT, = 1.0 keV, 

1 

1 keV3/cm 
y(x) = 1000 keV3/cm 

1 keV3/cm 

This fully specifies the physical problem. 

(7.7a) 

(7.7b) 

O<x<l, 
l<x<2, 
2<x<4. 

(7.7c) 

(7.7d) 

(7.7e) 

We discretize this problem as follows. The time variable is treated using the linear 
semi-implicit time differencing method described in Section II, with At = 3 x lo-‘I s. 
The angular variable p is treated using the standard discrete-ordinates method 
[2, 6, 71 with the S, Gauss-Legendre quadrature set. The frequency variable v is 
treated by the multigroup approximation, with 50 groups logarithmically spaced 
between hv,,, = 10 keV and hv,i” = lop5 keV. Thus, the gth group is defined by 

V,+1/2<V<Vg-1129 (7.8) 

with 

V g + l/2 = v,J;“v;,8/50, O<g<‘O. 

The spatial mesh is nonuniform and defined by 

(7.9) 

1 

0.1 cm O<x<l, 
Ax= 0.02 cm l<x<2, (7.10) 

0.2 cm 2<x<4. 

Thus, there are a total of 70 spatial cells. Within each cell, the material temperature 
T is taken to be constant, and Eqs. (4.8) and (4.10) are both discretized by the 
standard linear discontinuous method [7, 121. 

The problem is now fully discretized. At the beginning of each time step the 
material temperatures T are known in each cell, and thus the multigroup opacity, 
given by Eq. (7.6), and the grey opacities, given by Eqs. (5.2), are evaluated for each 
individual cell. 

To implement the GTA method, one is theoretically supposed to perform inner 
iterations to fully converge the grey equation (4.10) within each outer iteration. We 
have experimentally found that it is not necessary to do this. However, in reducing 
the number of inner iterations too much, one slows the convergence of the outer 
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iteration process, and then more outer iterations are reqired. Because multigrou 
transport sweeps are much more expensive than grey transort sweeps, the overall 
efficiency is thereby reduced. Hence, it is generally necessary to be sure that the grey 
equation is sufficiently converged within each time step. Operationally, we have 
found that the best way to insure this is to fix the number (N,,) of inner iterations 
per outer iteration. The optimal value of Nro is problem-dependent, and as might 
be expected, it increases as pIN increases. For the problem considered here, we 
selected N,, = 20. 

To determine outer iteration errors and convergence rates, we define 

E(k) = 
! 
f ,; [f”k+ 112) - Fi’k- l/z)]2 Ax, 

) 112 
, 

J=1 

where Z$ li2) is the cell-average intensity for the gth frequency group, at angle pu,, 
in the jth spatial cell. We stop iterating when ECk’ < 10e4. Estimates of the spectral 
radius are then made by monitoring the quantity 

R(k) = E’k’/E’k- 1) / (7.93) 

A similar procedure is used to monitor the spectral radius for inner iterations. 
In Table III we summarize our observed results. Here the theoretical values of pp 

and pIN are computed by evaluating the expressions (3.14) and (4.13) in each cell 
and taking the maximum value over the 70 cells, and the theoretical value of poul 
was taken from Table I. The observed values of pL are sometimes larger than the 
theoretical values, but only by a very small amount. The observed values of pIN are 
all close to and less than or equal to the theoretical values, and the observe 
of poUT are all less than the theoretical values, sometimes by a substantial amount. 

A detailed description of the convergence of the outer iterations is given in 
Table IV, where Rck) is tabulated for the first four time steps. The results for greater 

TABLE III 

Theoretical and Observed Spectral Radii 

PL PIN Pour 

Time step Theoretical Observed Theoretical Observed Theoretical ObSi=XWd 

1 0.9838 0.9837 0.7995 0.7995 0.844 0.011 
2 0.9839 0.9844 0.1996 0.7614 0..844 0.031 
3 0.9839 0.9842 0.7997 0.7726 0.844 0.495 
4 0.9839 0.9837 0.7997 0.7820 0.844 0.632 
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TABLE IV 

R(k) for Time Steps One through Four 

1 2 3 4 
k 

2 0.0111 0.0559 0.4973 0.3294 
3 0.0112 0.0387 0.5480 0.5830 
4 0.0112 0.0311 0.4667 0.5578 
5 0.4542 0.5829 
6 0.4571 0.6063 
7 0.4641 0.6229 
8 0.4718 0.6323 
9 0.4789 0.6367 

10 0.4848 0.6380 
11 0.4893 0.6377 
12 0.4926 0.6367 
13 0.4947 0.6356 
14 0.6344 
15 0.6334 
16 0.6326 
17 0.6319 

time steps are essentially the same as for time step 4. Thus, since time step 4 is 
typical, we shall discuss it in detail. 

Each GTA outer iteration consists of one multigroup transport sweep (for 50 
groups) followed by 20 one-group transport sweeps; this is equivalent to 1.4 
multigroup sweeps. Multiplying this by 17, we find that, effectively, 23.8 multigroup 
transport sweeps are performed in this time step. In the lambda iteration method, 
850 multigroup transport sweeps are required; thus, the GTA algorithm represents 
a speedup factor of about 36. The cost of the overhead needed to generate the grey 
opacities is very low and does not appreciably affect the speedup factor. 

We have tested the GTA method for a large variety of problems, with other 
spatial and time-differencing schemes [13, 141, and the speedups reported above 
are actually less than those observed in problems with larger values of 0 or At, 
where we typically see speedups in the range of 50-80. 

For smaller 0 or At, we observe smaller speedup factors. In particular, if At is 
sufficiently small that the “default” expressions for BT and 8, are used, then speedup 
factors of about 3.0 occur. (However, we reiterate that ‘in such problems, lambda 
iteration itself converges fairly rapidly.) Also, if a spatial differencing scheme with a 
negative flux flxup [7] is used, then in problems containing too many negative flux 
fixups, a degradation of the convergence rate or even an instability (lack of 
convergence) can occur [13]. 
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A crude formula for the speedup factor can be derived for large (7 At, in w 
case pL and pIN are very close to one. Here we have 

N =ln 0.1 In 0.1 In 10 
L Gp,ln[l -(l -pL)] %1-pr’ 

and, likewise, 

N 
In 10 

IN==. 

Therefore, 

(7.15) 

Now, let W, denote the work done in the lambda method to reduce 
iteration error by one order of magnitude. If work is measured in un 
computational effort required to perform one grey transport sweep, then 

W,=N,N,, (7.17) 

where No is the number of groups. Using the tyieal value poUT ~0.8, for which 
N oUT x 10, we find that 

W GTA=~O(NG+NIN~ 

Using Eqs. (7.16)-(7.18) we obtain for large N, a speedup factor of 

WL 1 -PIN NG -~--.----. 
W GTA l-p, 10 

For the opacities used in this article, we have for pIN x pL x 1, 

*z 18. 
L 

Therefore, with N, = 50, we obtain 

WL 
W 

x 90. 
GTA 

(7.19) 

(7.20) 

(7.21) 

This is an upper bound on the speedups that we observed in numerical calculations. 
We note that as c At --) co, N, and N,, both tend to co. For this situation, in the 

CTA algorithm one will spend most of the time performing grey iterations, Ef this 
inner iteration process could by accelerated, it would greatly affect the speedup 
factor. This and other matters are discussed in the next section. 
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VIII. DISCUSSION 

The GTA algorithm described in this article has the property that the terms that 
are not accelerated in the grey equation (4.10) are additive. It is also possible 
to formulate a GTA method in which the terms which are not accelerated are 
multiplicative. For example, if we integrate Eq. (3.1), over v and use Eq. (4.1), we 
can obtain the acceleration equations 

a. vl^(k+ 1) + s (g ;-yy;~j h 

s 1 

j(k+l) 

l ss 

i 

aI(k+ 112) dQ’ dv’ 

=Gc rjj I(k+ 112) dQ’ dv’ 11 f(k+1)df2’+ Qdv’, 
s (8.1) 

f-‘k + 1) = F’k + l/2) s 
j(k+ 1) da 

s 
f’k + l/2) dQ’ 1 . (8.2) 

These equations are the transport-theory analog of the nonlinear multifrequency- 
grey method that has been successfully employed in the diffusion approximation to 
the radiative transfer equations [Z, 81. Equation (8.1), however, has at least two 
shortcomings : 

‘(1) There is no guarantee that for each time step, the effective total cross 
section [the bracketed term on the left side of Eq. (8.1 )] dominates the effective 
scattering cross section (the bracketed term on the right side of Eq. (3.1)). Thus, 
there is no guarantee that Eq. (8.1) possesses a solution for arbitrary ICk+ 1’2). 

(2) The effective total cross section in Eq. (8.1) is dependent on Q. This is 
nonstandard, and it may cause stability problems for iteration algorithms even if a 
solution of Eq. (8.1) exists. 

Because of these difficulties, it seems unlikely that this nonlinear multifrequency 
grey approach will be either as effective or as robust as the linear GTA method. 

Finally, we discuss some ways in which the GTA algorithm might be modified to 
become more efficient. 

First, the GTA method is a nested algorithm requiring, in general, numerous 
inner iterations per outer iteration. Also, the GTA method appears to perform best 
when the number of inners per outer, Nro, is preassigned and fixed within each 
outer iteration. For example, in the problem considered in Section VII, Nro 
satisfies, for each time step, 

(pINy’O d 10-4, (8.3) 

but it is not known whether this or another definition of N,, is best. Further work 
on this will be required to optimize the GTA method. 

Another possible way to improve the efficiency of the GTA method is to 
accelerate the lambda method for convergence of the inner iterations. In particular, 
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as Q At -+ co, the spectral radii pL and PIN both tend to one, and although the G 
method remains much more efficient than the lambda method, it too re 
increasing amount of work per time step due to the increasingly slow ~o~verg~~~e 
of Eq. (4.10). Thus, various ways should be considered to accelerate this 
convergence using standard methods. In one-dimensional geometries, DSA [2] is a 
possible option which, for the grey equation, is relatively easy to implement. The 
boundary projecton acceleration (BPA) method [15] is another option which has 
the attractive feature that for linear discontinuous-type differencing schemes, 
pIN -+ 0 as dx + co. Therefore, the inner iterations will converge very rapidly for 
optically thick meshes, which are commonplace in thermal radiative transfer 
problems. Other possibilities are overrelaxation or Chebyschev acceleraton [4, IS], 
although these methods require the iteration matrix for the discretized proble 
to have eigenvalues that satisfy certain conditions, and it is not known even 
simple geometries whether these conditions are met. These comments also apply to 
the conjugate gradient method [16]. Yet another possibility is the two-ste 
acceleration method [ 171, which is extremely simple and conceptually appIica~le i 
any geometrical setting, although the speedups are modest (a factor of about 4.6 for 
the S, quadrature set). 

A third possible way to improve the GTA method is to attempt to accelerate 
outer iterations using a standard acceleration method, such as overrelaxation or 
Chebyschev. As before, one must have some knowledge of the outer iteration eigen- 
values, and to a certain extent these will be determined by any algorithm ern~l~~~ 
to accelerate the inner iterations if Eq. (4.10) is not iterated to full co~v~rge~~~. 
Another possible way to accelerate the outer iterations is to im 
GTA method (Eqs. (4.8)-(4.11)) which include a space-energy 
similar to that proposed by Axelrod, Dubois, and Rhoades fl8] 
radiation diffusion equations. In this method, which has been analyzed by 
11193, one group-collapses the multifrequency diffusion equation into 
diffusion equation and then alternates the solution of this sp 
diffusion equation (with energy-dependence built into the resi 
infinite-medium, multifrequency equation in each spatial 
dependence built into the residual terms). However, because of certain mathe~at~~a~ 
details, this idea may be better suited for diffusion than for transport prohl 

In conclusion, we have presented in this article a new iterative GTA met 
radiative transfer problems which is robust, very simple to impleme 
applicable in arbitrary geometrical settings. Improvements in this method usin 
standard or possibly novel acceleration techniques are almost surely possible and 
will be the subject of future research. 
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